Direct ‘writing’ of artificial cell membranes on graphene

10 Oct 2013

Graphene emerges as a versatile new surface to assemble model cell membranes mimicking those in the human body, with potential for applications in sensors for understanding biological processes, disease detection and drug screening.

Graphene could be a perfect base for medical applications
Graphene could be a perfect base for medical applications

Writing in Nature Communications, researchers at The University of Manchester led by Dr Aravind Vijayaraghavan, and Dr Michael Hirtz at the Karlsruhe Institute of Technology (KIT), have demonstrated that membranes can be directly ‘written’ on to a graphene surface using a technique known as Lipid Dip-Pen Nanolithography (L-DPN).

The human body contains 100 trillion cells, each of which is enveloped in a cell membrane which is essentially a phospholipid bi-layer membrane. These cell membranes have a plethora of proteins, ion channels and other molecules embedded in them, each performing vital functions.

It is essential, therefore, to study and understand these systems, thereby enabling their application in areas such as bio-sensing, bio-catalysis and drug-delivery. Considering that it is difficult to accomplish this by studying live cells inside the human body, scientists have developed model cell membranes on surfaces outside the body, to study the systems and processes under more convenient and accessible conditions.

Dr Vijayaraghavan’s team at Manchester and their collaborators at KIT have shown that graphene is an exciting new surface on which to assemble these model membranes, and brings many advantages compared to existing surfaces.

Dr Vijayaraghavan  said: “Firstly, the lipids spread uniformly on graphene to form high-quality membranes. Graphene has unique electronic properties; it is a semi-metal with tuneable conductivity.

“When the lipids contain binding sites such as the enzyme called biotin, we show that it actively binds with a protein called streptavidin. Also, when we use charged lipids, there is charge transfer from the lipids into graphene which changes the doping level in graphene. All of these together can be exploited to produce new types of graphene/lipids based bio-sensors.”

Dr. Michael Hirtz (KIT) explains the L-DPN technique: “The technique utilizes a very sharp tip with an apex in the range of several nanometers as a means to write lipid membranes onto surfaces in a way similar to what a quill pen does with ink on paper. The small size of the tip and the precision machine controlling it allows of course for much smaller patterns, smaller than cells, and even right down to the nanoscale.”

“By employing arrays of these tips multiple different mixtures of lipids can be written in parallel, allowing for sub-cellular sized patterns with diverse chemical composition.”
 

Notes for editors

The paper, Multiplexed biomimetic lipid membranes on graphene by dip-pen nanolithography by M. Hirtz, A. Oikonomou, T. Georgiou, H. Fuchs & A. Vijayaraghavan is a collaboration involving researchers from UK and Germany and will appear in Nature Communications (10.1038/ncomms3591) at 1000 BST 10th September.

Dr Vijayaraghavan is available for comment. He is the 2013 winner of the Joshua Philips Award for Innovation in Science Communication, and Science Communicator in Residence at the Manchester Science Festival.

Images of graphene can be downloaded from http://www.condmat.physics.manchester.ac.uk/imagelibrary/ and images specific to this story are available from the Press Office.

For media enquiries please contact:

Daniel Cochlin
Graphene Communications and Marketing Manager
The University of Manchester
0161 275 8382
07917 506158
www.graphene.manchester.ac.uk
www.manchester.ac.uk
Twitter: @UoMGraphene
 

Did you know?

Activities, Events and Seminars in the School are listed on our Events Website
▲ Up to the top